A comparison between the hake cannibalism and inter-species predation models presented in Bergh *et al.* (2016) and Ross-Gillespie (2016)

A. Ross-Gillespie¹

Note that the Ross-Gillespie (2016) predation model allows for the *M. capensis* preference for hake prey to shift from primarily *M. capensis* to primarily *M. paradoxus* prey as the predators grow larger. Further, this model incorporates a competition component that effectively limits the predation mortality rate at 0.06 per month or 0.72 per annum.

Bergh <i>et al.</i> (2016)	Ross-Gillespie (2016)			
Maximum age considered (plus-group): 15 years				
Natural mortality is higher than for the conventional stock assessment model				
<i>M. paraodxus</i> (pristine): 1.5* at age 0 to 0.35* at age >5	M. paradoxus (pristine): 0.92 at age 0 to 0.2 at age >11			
<i>M. capensis</i> (pristine): 1.0* at age 0 to 0.90* at age >5	M. capensis (pristine): 0.92 at age 0 to 0.2 at age >11			
Pristine spawning biomass is lower than for the conventional stock assessment model (the Rademeyer and Butterworth 2014 K ^{sp} estimates are 1504 for <i>M. paradoxus</i> , and 491 for <i>M. capensis</i>). <i>M. paradoxus</i> K ^{sp} : 387 <i>M. paradoxus</i> K ^{sp} : 497				
$M. \ capensis \ K^{sp}: 122$	<i>M. capensis</i> K^{sp} : 280			
M. paradoxus exhibits competitive release				
Bsp/Ksp for <i>M. paradoxus</i>				
Max: 1.32* (1958*)	Max: 1.32 (1956)			
2013: 50%	2013: 14%			
predation off: 28%	predation off ~15%			
Species- and age-disaggregated				
Sex-disaggregated	Sex-aggregated			
Diet information from Punt and Leslie (1995).	Diet information from DAFF 1999-2013 dataset.			
Hake ration and dietary percentages are fixed on input. Aim is to develop method to reflect the relationship between hake diet and prey availability.	Hake ration and dietary percentages vary with predator and prey abundances.			
Diet data are not formally included in the likelihood. Aim is to develop methods for including the data in the likelihood function.	Diet data are formally included in the likelihood.			
Preference function is a beta function, informed by data in Butterworth and Harwood (1991) and BEP (1991).	Preference function is a gamma function, informed by the DAFF 1999-2013 dataset.			
No coast-disa	aggregation			
Biannual time-step	Monthly time-step			
Initial pristine natural mortality vector is taken to be a logistic function of age, and the pristine predation mortality rates are constrained to not exceed this total natural mortality through a posfun function. The basal mortality is the total pristine natural mortality less the pristine predation mortality, and assumed to be time invariant.	A time- and age-invariant basal mortality is assumed. The initial population structure is calculated in a step-wise manner starting from the age plus-group (under the assumption that these large hake are not preyed upon by other hake) and moving systematically to the new recruits, calculating predation rates along the way. Total pristine natural mortality is the sum of the predation mortality and basal mortality.			

¹ MARAM (Marine Resource Assessment and Management Group), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa.

FISHERIES/2016/MAR/SWG-DEM/08

Baranov formulation of the catch equation			
sp,ap = predator, s,a =prey			
Hake consumed = Holling Type II function of hake predator and prey numbers, other prey numbers and predator-prey preference			
Other prey component included			
No other predator component			
Daily ration			
Model output			
0.1%-0.7% for paradoxus, 0.5%-4.0% for capensis			
Proportion of hake in the diet			
Model output			
par on par: 0.00-0.51			
cap on par: 0.00-0.21			
cap on cap: 0.02-0.10			
Preference			
Optimum prey/predator length 39%-50%			
Maximum prey/predator length 65-70%			

* Inferred from the graphical output in Bergh *et al.* (2016).

Rademeyer and Butterworth (2014)	Bergh <i>et al.</i> (2016)	Ross-Gillespie (2016)
Sex-disaggregated	Sex-disaggregated	Sex-aggregated
Fits to age-length keys	Fits to age-length keys	Does not fit to age-length keys
Modified Ricker stock-recruitment	Modified Ricker stock-recruitment	Beverton-Holt stock-recruitment
relationship	relationship	relationship
Pope's approximation for the catch	Pope's approximation for the catch	Baranov formulation of the catch
equation	equation	equation
Annual time-step	Biannual time-step	Monthly time step

References

- Bergh, M., Fourie, A. and Joselson, N. 2016. Modification of the prevailing species, sex, age and size disaggregated hake stock assessment model to incorporate hake cannibalism and inter-species predation. Document FISHERIES/2016/MAR/SWG-DEM/06.
- Punt, A. E. and Leslie, R. W. 1995. The effects of future consumption by the Cape fur seal on catches and catch rates of the Cape hakes. 1 . Feeding and diet of the Cape hakes *Merluccius capensis* and *M* . *paradoxus*. *South African Journal* of Marine Science, 16(1), 37(55).
- Rademeyer, R. A. and Butterworth, D. S. 2014b. Speci_cations of the South African hake 2014 Reference Case assessment. Document MARAM/IWS/DEC14/Hake/P2 reviewed at the International Stock Assessment Workshop, Cape Town, December 2014.
- Ross-Gillespie, A. 2016. Modelling cannibalism and inter-species predation for the Cape hake species *Merluccius capensis* and *M. paradoxus*. PhD thesis, University of Cape Town, submitted.